9811 Mixing Mixed - Integer Inequalities
نویسندگان
چکیده
Mixed-integer rounding (MIR) inequalities play a central role in the development of strong cutting planes for mixed-integer programs. In this paper, we investigate how known MIR inequalities can be combined in order to generate new strong valid inequalities. Given a mixed-integer region S and a collection of valid “base” mixed-integer inequalities, we develop a procedure for generating new valid inequalities for S. The starting point of our procedure is to consider the MIR inequalities related with the base inequalities. For any subset of these MIR inequalities, we generate two new inequalities by combining or ”mixing” them. We show that the new inequalities are strong in the sense that they fully describe the convex hull of a mixedinteger region associated with the base inequalities. We also study some extensions of this mixing procedure, and discuss how it can be used to obtain new classes of strong valid inequalities for various mixed-integer programming problems. In particular, we present examples for production planning, capacitated facility location, capacitated network design, and multiple knapsack problems.
منابع مشابه
Separation of Mixing Inequalities in a Mixed Integer Programming Solver
This paper shows how valid inequalities based on the mixing set can be used in a mixed integer programming (MIP) solver. It discusses the relation of mixing inequalities to flow path and mixed integer rounding inequalities and how currently used separation algorithms already generate cuts implicitly that can be seen as mixing cuts. Further on, it describes two new separation algorithms that gen...
متن کاملMixed n-step MIR inequalities: Facets for the n-mixing set
Günlük and Pochet [O. Günlük , Y. Pochet: Mixing mixed integer inequalities. Mathematical Programming 90(2001) 429-457] proposed a procedure to mix mixed integer rounding (MIR) inequalities. The mixed MIR inequalities define the convex hull of the mixing set {(y, . . . , y, v) ∈ Z × R+ : α1y + v ≥ βi, i = 1, . . . ,m} and can also be used to generate valid inequalities for general as well as se...
متن کاملMixing mixed-integer inequalities
Mixed-integer rounding (MIR) inequalities play a central role in the development of strong cutting planes for mixed-integer programs. In this paper, we investigate how known MIR inequalities can be combined in order to generate new strong valid inequalities. Given a mixed-integer region S and a collection of valid \base" mixed-integer inequalities , we develop a procedure for generating new val...
متن کاملSequential Pairing of Mixed Integer Inequalities
We present a scheme for generating new valid inequalities for mixed integer programs by taking pairwise combinations of existing valid inequalities. Our scheme is related to mixed integer rounding and mixing. The scheme is in general sequence-dependent and therefore leads to an exponential number of inequalities. For some important cases, we identify combination sequences that lead to a managea...
متن کاملProjecting an Extended Formulation for Mixed-Integer Covers on Bipartite Graphs
We consider the mixed integer version of bipartite vertex cover. This is equivalent to the mixed integer network dual model, recently introduced in [2], that generalizes several mixed integer sets arising in production planning. We derive properties of inequalities that are valid for the convex hull of the mixed integer bipartite covers by projecting an extended formulation onto the space of th...
متن کامل